
Databases run better with Percona



TDE as an Extension
A Different Path for PostgreSQL Encryption



©2025 Percona 

A Different Path for PostgreSQL Encryption

● About the journey

● How a simple concept turns into a complex topic

● What did we do?

● What mistakes did we make?

● What could have been done better?

3



©2025 Percona 

Transparent data encryption

● Encrypt the data before writing to the disk

● Without query changes

● Available in many SQL databases already

● Policy requirement

4



©2025 Percona 

TDE: debate

● Is it worth it?

○ Encrypted disks / filesystems

○ The memory remains unencrypted

○ Performance loss, even when not using it

5



©2025 Percona 

TDE: debate

● Choices

○ What algorithms to support?

○ What to encrypt?

○ When to encrypt?

○ Global or customizable?

6



©2025 Percona 

The elephant in the room

● TDE is a huge and difficult topic

● PostgreSQL is Community driven

● No single decision maker

● First step: agree on the feature

7



©2025 Percona 

TDE In PostgreSQL

● First patch in 2016: cluster wide, single key

● 2018: table level granularity

● 2019: key management

● Huge patch

● Long discussions on pg-hackers

● 2025: still no consensus

8



©2025 Percona 

TDE In PostgreSQL: commercial solutions

● Closed source enterprise forks

● With encryption features

9



©2025 Percona 

TDE In PostgreSQL: step by step

● Many small patches instead of one huge patch

● Unified file system API

● Transparent column encryption

● Special page storage 

● …

● Not much progress yet

10



©2025 Percona 

Can we provide an open source version?

● Creating a fork

○ Maintaining the already existing patchset as a fork?

○ Writing a completely new patchset from scratch?

● Or trying to do it as an extension?

○ Without core changes

○ With minimal core changes

11



©2025 Percona 

Can we provide an open source version?

● Creating a fork

○ Maintaining the original patchset as a fork?

○ Writing a completely new patchset from scratch?

● Or trying to do it as an extension?

○ Without core changes

○ With minimal core changes

12



©2025 Percona 

Access methods

● Table access methods - storage for tables

● Index access methods - storage for indexes

● Postgres already provides extension points

● CREATE TABLE … USING <access_method>;

● Heap - the default table access method

13



©2025 Percona 

Let’s duplicate heap!

1. Extract the code from postgres

2. Put it into an extension

3. Rename it to tde_heap

4. Add the minimal modifications required for encryption

14



©2025 Percona 

Let’s duplicate heap!

● Proof of concept done in a few days

● Executes simple queries without issues

● Success!?

Q: How can we support other storage engines?

Q: How can we handle indexes?

15



©2025 Percona 

Internals

● Hook into tuple retrieval/saving

● When heap loads a tuple, add decryption code

● When heap persists a tuple, add encryption code

● Everything happens within the connection handler

● Buffer pool stores encrypted records

○ More than data-at-rest!

16



©2025 Percona 

Challenge: memory management

● Where do we store the decrypted data?

● Decrypt in buffer pool

○ Would require some flags/modifications

● Decrypt in local process

● Most of the code works with one tuple at a time

○ Load - use - save/forget - go to next tuple

17



©2025 Percona 

Challenge: memory management

● Most of the code works with one tuple at a time

● An exception: scans

● Initial symptom: data corruption

● First fix: keep decrypted tuples until end of scope

● Huge memory spike

● Proper fix with modified slots later

18



©2025 Percona 

Challenge: performance

● Promising initial pgbench/sysbench results

● But: no index encryption

● Basic perf tests use index scans

● Sequential scans: terrible result

19



©2025 Percona 

How can we handle indexes?

● Duplicate all index methods?

● What about extensions?

● Performance concerns

● Security concerns

○ Only tuple data is encrypted, not header

○ Structure remains the same and is visible

20



©2025 Percona 

Dead End

● Unfixable performance problem

● Questions about correctness

a. Heap is huge

b. Are there more hidden 

problems?

● Is it good enough without index 

encryption?
21



©2025 Percona 

Let’s try it differently

● Creating a fork

○ Maintaining the original patchset as a fork?

○ Writing a completely new patchset from scratch?

● Or trying to do it as an extension?

○ Without core changes

○ With minimal core changes

22



©2025 Percona 

Storage manager

● Layer between postgres and disk for database objects

● Designed for extensibility

● Extension point not exposed for extensions

● There’s a proposed patch

● Patch is already used by multiple companies

23



©2025 Percona 

Storage manager

● Layer between postgres and disk for database objects

○ Tables

○ Indexes

○ Anything else visible in the database

● NOT: WAL

● NOT: temporary files

24



©2025 Percona 

Let’s add extension points!

● Take existing SMGR patch

● Add similar extension point for WAL

● Future: add extension point for temporary files

● Minimal core patches

● Easy to maintain fork

25



©2025 Percona 

Reuse what we can

● Keep table access method as a marker for encryption

● Indexes/sequences/… inherit encryption status

● Keep complete user facing API as is

● Proof of concept done in a few days

● Executes simple queries without issues

● Success!?

26



©2025 Percona 

Challenge: wrong abstraction level

● SMGR deals with raw data and file identifiers

● Access methods are database concepts

● Bridge: event triggers

27



©2025 Percona 

Event triggers

● User code executed before/after DDL

● If in CREATE TABLE … USING tde_heap;

● Then write encrypted objects

● If CREATE INDEX or CREATE SEQUENCE or … 

● Then check encryption of parent table

28



©2025 Percona 

Problem: table rewrite

● Some commands completely rewrite tables

● In practice: create files with new filenames

● Do we have to encrypt these new files?

● Some commands do not trigger event triggers

○ VACUUM FULL …

● One more core patch

29



©2025 Percona 

Problem: multiple tables in one statement

● Table inheritance

● Typed tables

● Partitioned tables

● One partition encrypted, another not

● Altering them both in one ALTER

● No good solution, we report an error instead

30



©2025 Percona 

Problem: WAL encryption

● Not an issue with first solution

○ Modified heap code adds tuples to WAL after encryption

○ Encrypted tables write encrypted WAL

○ Plain tables write plain WAL

● New solution writes clear unencrypted WAL

● WAL code needs new extension points

31



©2025 Percona 

Problem: wrong abstraction level

● WAL code doesn’t know about database objects

● Can’t tell if we write WAL for encrypted or plain tables

● Workaround:

○ separate setting

○ encrypt entire WAL

○ or don’t encrypt it at all

32



©2025 Percona 

Problem: WAL is sometimes rewritten

● Original assumption: WAL is write-once, read often

○ we can always write with the latest encryption key

● Reality: WAL is rewritten in some corner cases

● Debugging nightmare

● Error happens during write

● But only discovered later, IF something tries to read it back

33



©2025 Percona 

Problem: tool ecosystem

● WAL files are completely encrypted

● Not just the records in them

● Tools can no longer read them

○ waldump

○ backup tools

○ WAL archiving

34



©2025 Percona 

Problem: tool ecosystem

● Duplicate some tools

○ pg_waldump -> pg_tde_waldump

● Write decrypted data for backup streams

○ Not ideal

○ Backup tools have their own encryption support

35



©2025 Percona 

Future: not yet done

● Upstreaming new extension points

● Temporary files

● System tables

● initdb

● aio

36



©2025 Percona 

Future: tablespace as a marker?

● “Keep table access method as a marker for encryption”

● The main source of many problems

● Could we do better by using tablespaces?

37



©2025 Percona 

Future: multitenancy?

● “Keep complete user facing API as is”

● Multitenancy: each database configured individually

○ Different keys

○ Different key servers

● Great feature in the first prototype

38



©2025 Percona 

Future: multitenancy?

● WAL is global, it has its own separate key

● Recovery needs access to all key servers

● If even one is unreachable, recovery fails

● Defining new key servers requires SUPER

39



©2025 Percona 

Summary

● Complex projects often don’t go as initially planned

● Our first idea looked great initially…

● … but we had to abandon it later

● Second idea also had major problems

● Still has open questions

● But it definitely works!

40



©2025 Percona 

Takeaways

● Don’t delay detailed testing

● Be very critical about (performance) tests

● Don’t be afraid to change things

● Keep questioning the design

41



Thank You!

percona.com


