PERCONA

Databases run better with Percona




PERCONA

TDE as an Extension

A Different Path for PostgreSQL Encryption




A Different Path for PostgreSQL Encryption

About the journey
How a simple concept turns into a complex topic
What did we do?

What mistakes did we make?

What could have been done better?

©2025 Percona /A\ PERCONA 3



Transparent data encryption

Encrypt the data before writing to the disk
Without query changes
Available in many SQL databases already

Policy requirement

©2025 Percona /A\ PERCONA 4



TDE: debate

e Isitworth it?
o Encrypted disks / filesystems
o The memory remains unencrypted

o Performance loss, even when not using it

©2025 Percona /A\ PERCONA 5



TDE: debate

e Choices
o What algorithms to support?
o What to encrypt?
o When to encrypt?

o Global or customizable?

©2025 Percona /A\ PERCONA 6



The elephant in the room

TDE is @

huge and difficult topic

PostgreSQL is Community driven

No sing

First ste

e decision maker

0: agree on the feature

/A\ PERCONA

7



TDE In PostgreSQL

First patch in 2016: cluster wide, single key
2018: table level granularity

2019: key management

Huge patch

Long discussions on pg-hackers

2025: still no consensus

©2025 Percona /A\ PERCONA 8



TDE In PostgreSQL: commercial solutions

e Closed source enterprise forks

e With encryption features

©2025 Percona /A\ PERCONA 9



TDE In PostgreSQL: step by step

Many small patches instead of one huge patch
Unified file system API
Transparent column encryption

Special page storage
Not much progress yet

©2025 Percona /NPERCONA 10



Can we provide an open source version?

e Creating a fork
o Maintaining the already existing patchset as a fork?
o Writing a completely new patchset from scratch?

e Ortrying to do it as an extension?
o Without core changes

o With minimal core changes

©2025 Percona /\\ PERCONA 1



Can we provide an open source version?

e Creating a fork

o Maintaining the original patchset as a fork?

o Writing a completely new patchset from scratch?
e Ortrying to do it as an extension?

o Without core changes

o With minimal core changes

©2025 Percona /NUPERCONA 1



Access methods

Table access methods - storage for tables
Index access methods - storage for indexes
Postgres already provides extension points
CREATE TABLE ... USING <access_method>;

Heap - the default table access method

©2025 Percona /NUPERCONA 13



kWD

Let’s duplicate heap!

Extract the code from postgres
Put it into an extension
Rename it to tde_heap

Add the minimal modifications required for encryption

©2025 Percona /A\ PERCONA

14



Let’s duplicate heap!

e Proof of concept done in a few days
e Executes simple queries without issues

e Successl!?

Q: How can we support other storage engines?

Q: How can we handle indexes?

/\\ PERCONA 15

222222222222



Internals

Hook into tuple retrieval/saving

When heap loads a tuple, add decryption code
When heap persists a tuple, add encryption code
Everything happens within the connection handler
Buffer pool stores encrypted records

o More than data-at-rest!

©2025 Percona /NUPERCONA 16



Challenge: memory management

Where do we store the decrypted data?
Decrypt in buffer pool

o Would require some flags/modifications
Decrypt in local process

Most of the code works with one tuple at a time

o Load - use - save/forget - go to next tuple

©2025 Percona /\\ PERCONA 17



Challenge: memory management

Most of the code works with one tuple at a time
An exception: scans
nitial symptom: data corruption

-irst fix: keep decrypted tuples until end of scope

Huge memory spike

Proper fix with modified slots later

©2025 Percona /U PERCONA 13



Challenge: performance

Promising initial pgbench/sysbench results
But: no index encryption
Basic perf tests use index scans

Sequential scans: terrible result

©2025 Percona /NUPERCONA 19



How can we handle indexes?

Duplicate all index methods?

What about extensions?

Performance concerns

Security concerns

o Only tuple data is encrypted, not header

o Structure remains the same and is visible

©2025 Percona /\\ PERCONA 20



Dead End

e Unfixable performance problem
e Questions about correctness
a. Heap is huge
b. Are there more hidden
problems?
e [s it good enough without index

encryption?

/\\ PERCONA 2



Let’s try it differently

e Creating a fork

o Maintaining the original patchset as a fork?

o Writing a completely new patchset from scratch?
e Ortrying to do it as an extension?

o Without core changes

o With minimal core changes

©2025 Percona /\\ PERCONA 29



Storage manager

Layer between postgres and disk for database objects
Designed for extensibility

Extension point not exposed for extensions

There's a proposed patch

Patch is already used by multiple companies

©2025 Percona /\\ PERCONA 23



Storage manager

e Layer between postgres and disk for database objects
o Tables
o Indexes
o Anything else visible in the database

o NOT: WAL

e NOT: temporary files

©2025 Percona /NUPERCONA 24



Let’s add extension points!

Take existing SMGR patch

Add similar extension point for WAL

Future: add extension point for temporary files
Minimal core patches

Easy to maintain fork

©2025 Percona /U PERCONA 25



Reuse what we can

Keep table access method as a marker for encryption
Indexes/sequences/.. inherit encryption status

Keep complete user facing APl as is

Proof of concept done in a few days

Executes simple queries without issues

Success!?

©2025 Percona /\\ PERCONA 26



Challenge: wrong abstraction level

e SMGR deals with raw data and file identifiers
e Access methods are database concepts

e Bridge: event triggers

©2025 Percona /U PERCONA 27



Event triggers

User code executed before/after DDL

If in CREATE TABLE ... USING tde_heap;

Then write encrypted objects

If CREATE INDEX or CREATE SEQUENCE or ..

Then check encryption of parent table

©2025 Percona /\\ PERCONA 28



Problem: table rewrite

Some commands completely rewrite tables

In practice: create files with new filenames

Do we have to encrypt these new files?

Some commands do not trigger event triggers
o VACUUM FULL ...

One more core patch

©2025 Percona /\\ PERCONA 29



Problem: multiple tables in one statement

Table inheritance

Typed tables

Partitioned tables

One partition encrypted, another not
Altering them both in one ALTER

No good solution, we report an error instead

©2025 Percona /\\ PERCONA 30



Problem: WAL encryption

e Not an issue with first solution
o Modified heap code adds tuples to WAL after encryption
o Encrypted tables write encrypted WAL
o Plain tables write plain WAL

e New solution writes clear unencrypted WAL

e WAL code needs new extension points

©2025 Percona /NUPERCONA 3



Problem: wrong abstraction level

e WAL code doesn’t know about database objects
e Can't tell if we write WAL for encrypted or plain tables
e Workaround:

o sepdarate setting

o encrypt entire WAL

o ordon't encrypt it at all

©2025 Percona /\\ PERCONA 32



Problem: WAL is sometimes rewritten

Original assumption: WAL is write-once, read often

o we can always write with the latest encryption key
Reality: WAL is rewritten in some corner cases
Debugging nightmare

Error happens during write

But only discovered later, IF something tries to read it back

©2025 Percona /\\ PERCONA 33



Problem: tool ecosystem

e WAL files are completely encrypted
e Not just the records in them
e Tools can no longer read them

o waldump

o backup tools

o WAL archiving

©2025 Percona /UPERCONA 34



Problem: tool ecosystem

e Duplicate some tools
o pg_waldump -> pg_tde_waldump

e Write decrypted data for backup streams
o Notidedl

o Backup tools have their own encryption support

©2025 Percona /U PERCONA 35



Future: not yet done

Upstreaming new extension points
Temporary files

System tables

initdb

aio

©2025 Percona /\\ PERCONA 36



Future: tablespace as a marker?

e “Keep table access method as a marker for encryption”
e The main source of many problems

e Could we do better by using tablespaces?

©2025 Percona /U PERCONA 37



Future: multitenancy?

o “Keep complete user facing API as is”

e Multitenancy: each database configured individually
o Different keys

o Different key servers

e Great feature in the first prototype

222222222222

/\\ PERCONA 38



Future: multitenancy?

WAL is global, it has its own separate key
Recovery needs access to all key servers
If even one is unreachable, recovery fails

Defining new key servers requires SUPER

©2025 Percona /\\ PERCONA 39



summary

Complex projects often don't go as initially planned

Our first idea looked great initially...

.. but we had to abandon it later
Second ided also had major problems
Still has open questions

But it definitely works!

©2025 Percona /\\ PERCONA 40



Takeaways

Don’t delay detailed testing
Be very critical about (performance) tests
Don’t be afraid to change things

Keep questioning the design

©2025 Percona /\\ PERCONA 4]



Thank You!




